Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell reports methods ; 3(2), 2023.
Artículo en Inglés | EuropePMC | ID: covidwho-2288727

RESUMEN

Summary Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection. Graphical abstract Highlights • We present a computational framework for alternative splicing (AS) diagnostic markers• Our AS biomarkers outperform gene-expression biomarkers in COVID-19 detection• Microfluidic PCR diagnostic assay of AS biomarkers achieves greater than 98% accuracy• We interpret the biological importance of identified AS biomarkers Motivation Host-based response assays (HRAs) can often diagnose infectious disease earlier and more precisely than pathogen-based tests. However, the role of RNA alternative splicing (AS) in HRAs remains unexplored, as existing HRAs are restricted to gene expression signatures. We report a computational framework for the identification, optimization, and evaluation of blood AS-based diagnostic assay development for infectious disease. Using SARS-CoV-2 infection as a case study, we demonstrate the improved accuracy of AS biomarkers for COVID-19 diagnosis when compared against six reported transcriptome signatures and when implemented as a microfluidic PCR diagnostic assay. Host-based response assays can diagnose infectious disease earlier and more precisely than pathogen-based tests. However, the role of RNA alternative splicing (AS) remains unexplored. Zhang et al. present a computational framework for AS diagnostic biomarkers. Using SARS-CoV-2 as a case study, they demonstrate the improved accuracy of AS biomarkers for COVID-19 diagnosis.

2.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2270759

RESUMEN

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Asunto(s)
COVID-19 , Adulto Joven , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudios Prospectivos , Metilación de ADN/genética , Procesamiento Proteico-Postraduccional
3.
Cell Rep Methods ; 3(2): 100395, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2237560

RESUMEN

Assays detecting blood transcriptome changes are studied for infectious disease diagnosis. Blood-based RNA alternative splicing (AS) events, which have not been well characterized in pathogen infection, have potential normalization and assay platform stability advantages over gene expression for diagnosis. Here, we present a computational framework for developing AS diagnostic biomarkers. Leveraging a large prospective cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and whole-blood RNA sequencing (RNA-seq) data, we identify a major functional AS program switch upon viral infection. Using an independent cohort, we demonstrate the improved accuracy of AS biomarkers for SARS-CoV-2 diagnosis compared with six reported transcriptome signatures. We then optimize a subset of AS-based biomarkers to develop microfluidic PCR diagnostic assays. This assay achieves nearly perfect test accuracy (61/62 = 98.4%) using a naive principal component classifier, significantly more accurate than a gene expression PCR assay in the same cohort. Therefore, our RNA splicing computational framework enables a promising avenue for host-response diagnosis of infection.

4.
Cell Syst ; 13(12): 989-1001.e8, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2165138

RESUMEN

The identification of a COVID-19 host response signature in blood can increase the understanding of SARS-CoV-2 pathogenesis and improve diagnostic tools. Applying a multi-objective optimization framework to both massive public and new multi-omics data, we identified a COVID-19 signature regulated at both transcriptional and epigenetic levels. We validated the signature's robustness in multiple independent COVID-19 cohorts. Using public data from 8,630 subjects and 53 conditions, we demonstrated no cross-reactivity with other viral and bacterial infections, COVID-19 comorbidities, or confounders. In contrast, previously reported COVID-19 signatures were associated with significant cross-reactivity. The signature's interpretation, based on cell-type deconvolution and single-cell data analysis, revealed prominent yet complementary roles for plasmablasts and memory T cells. Although the signal from plasmablasts mediated COVID-19 detection, the signal from memory T cells controlled against cross-reactivity with other viral infections. This framework identified a robust, interpretable COVID-19 signature and is broadly applicable in other disease contexts. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
COVID-19 , Virosis , Humanos , SARS-CoV-2
6.
Front Immunol ; 13: 821730, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1817940

RESUMEN

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Asunto(s)
COVID-19 , Factores de Crecimiento de Fibroblastos , Humanos , Interleucina-17 , Metaloproteinasa 10 de la Matriz , Proteómica , SARS-CoV-2
7.
Drug Discov Today ; 26(12): 2800-2815, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1330755

RESUMEN

The COVID-19 pandemic has caused millions of deaths and massive societal distress worldwide. Therapeutic solutions are urgently needed, but de novo drug development remains a lengthy process. One promising alternative is computational drug repurposing, which enables the prioritization of existing compounds through fast in silico analyses. Recent efforts based on molecular docking, machine learning, and network analysis have produced actionable predictions. Some predicted drugs, targeting viral proteins and pathological host pathways are undergoing clinical trials. Here, we review this work, highlight drugs with high predicted efficacy and classify their mechanisms of action. We discuss the strengths and limitations of the published methodologies and outline possible future directions. Finally, we curate a list of COVID-19 data portals and other repositories that could be used to accelerate future research.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Biología Computacional , Reposicionamiento de Medicamentos/métodos , Simulación por Computador , Bases de Datos Factuales , Reposicionamiento de Medicamentos/tendencias , Humanos , Aprendizaje Automático , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA